Dear Lubos,
First, I would like to thank you very much for his kind invitation for a guest post. I am certainly honored by this gesture.
We recently published a paper titled “Radiation from a Collapsing Object is Manifestly Unitary” in PRL. The title was carefully chosen (note the absence of the term “black hole”) because of its potential implications for a very touchy issue of the information loss paradox. I will use this opportunity to explain our points of view.
The information loss paradox is one of the most persistent problems that we are currently facing in theoretical physics. For almost forty years, many possible solutions have been put forward, and practically whatever one could possibly say has already been said many times over. What we are missing are explicit calculations. However, it is difficult to start calculations if we do not agree what question to ask. From the standard field theory in curved space-time perspective, one has to solve a well-defined Cauchy problem. You start with some initial conditions on a complete space-like hypersurface, evolve the system in time using your dynamical equations, and you want to see if this evolution is unitary. Note that this formulation does not use the notion of an observer. You do not require that your hypersurfaces must be observable by a single observer. Like in cosmology, you start with a space-like hypersurface a fraction of a second after the Big Bang in order to avoid quantum gravity, and then you evolve it in time. You do not ask that a single observer must see the whole hypersurface (hat tip to Samir Mathur).
However, the complementarity picture advocated by Susskind puts an observer in the central position. You always ask what a certain observer would see. Since there is no non-trivial global slice in the black hole space-time which is simultaneously observed by both a static asymptotic observer and a freely falling one, then you introduce the principle of complementarity of the two pictures that they see. You assume that an asymptotic observer would see a normal unitary evolution (though to the best of my knowledge nobody yet solved the full time-dependent problem of the gravitational collapse and subsequent evaporation for an asymptotic observer), and then you ask what happens with information as seen by an infalling observer: did it get bleached at the horizon, doubled, transferred out by some non-local effects or something else. Though this picture sounds reasonable, it is much less defined in terms of the standard field theory in curved space-time. Perhaps, there could be many pictures in between these two extremes.
Let’s now explain what we calculated, without prejudice, and then discuss what implications for the information loss paradox are. For a while I was pondering on Don Page's result in Phys. Rev. Lett. 71, 1291 (1993), claiming that, if you divide a thermodynamic system into small subsystems, after some time there is very little or no information in small subsystems, and all the information is actually contained in subtle correlations between the subsystems. If you interpret subsystems as particles (with a few degrees of freedom), then it appears that particles do not carry information. All the information is encoded in subtle correlations between them. (Note: information within the system here is defined as the difference between the maximal possible and average entropy of the system. If this difference is zero, then system has no information in it.) Don Page showed that this is true in the absence of gravity, but I thought it might be true even in the presence of gravity. So we setup our calculations. We used the functional Schrödinger approach that we defined earlier with Lawrence Krauss and Tanmay Vachaspati.
Consider a thin shell of matter which collapses under its own gravity. We use Schwarzschild coordinates because we are interested in the point of view of an observer at infinity. The metric outside the shell can be written as
One could even perform the best fit through the late time curves and find the temperature which matches the Hawking temperature very well. It is very interesting that we obtained approximately thermal spectrum without tracing out any of the modes.
However, we are here interested in correlations between the emitted quanta, which is contained not in the diagonal spectrum, but actually in the total density matrix for the system. The density matrix is defined as
The main results are shown in the next two figures. First figure shows the magnitudes of the diagonal and off-diagonal terms.
We clearly see that the magnitudes of the modes start small, increase with time, reach their maximal value and then decrease. They must decrease to leave room for higher excitations terms, since the trace must remain unity. This implies that correlations among the created particles also increase with time. Since there are progressively more cross-terms than the diagonal terms, their cumulative contribution to the total density matrix simply cannot be neglected.
Information content in the system is usually given in terms of a trace of the squared density matrix. If the trace of the squared density matrix is one, then the state is pure, while the zero trace corresponds to a mixed state. In this figure we plot the traces of squares of two density matrices as functions of time for a fixed frequency. One is the Hawking radiation density matrix
We clearly see that
For unitarity to be manifest we have to see the total density matrix, i.e. all the created modes and correlations between them. If some of the modes are lost (say into the singularity), then the incomplete density matrix may not look like that of the pure state. So what are implications of our results to the information loss paradox? We have to compare our results with the standard textbook Hawking result.
In his original calculations, Hawking used the Bogoliubov transformation between the initial (Minkowski) vacuum and final (Schwarzschild) vacuum at the end of the collapse. The vacuum mismatch gives the thermal spectrum of particles. In this picture, there is a negative energy flux toward the center of a black hole and positive energy flux toward infinity, and thus a black hole loses its mass. Note that the existence of the horizon is necessary for this, since it is not possible to have a macroscopic negative energy flux without the horizon (the fact that the time-like Killing vector becomes space-like within the horizon is responsible for this). Since an outside observer, which is the most relevant observer for the question of the information loss, never sees the formation of the horizon, it is not clear how this picture works for him. In fact, since the horizon is necessary for the Hawking radiation, and horizon is never formed for an outside observer, it is not clear if he will ever see Hawking radiation.
This is where the advantage of the time-dependent functional Schrödinger formalism becomes obvious. In this picture, it is the time-dependent metric during the collapse which produces particles. No horizon is needed for this. As the collapsing shell approaches its own Schwarzschild radius, this radiation becomes more and more Planckian.
We now emphasize that the Planckian spectrum of produced particles is not equivalent to a thermal spectrum. For a strictly thermal spectrum there should be no correlations between the produced particles. The corresponding density matrix should only have non-zero entries on its diagonal. In contrast, if subtle correlations exist, then the particle distribution might be Planckian, but the density matrix will have non-diagonal entries.
As mentioned, in his original calculations, Hawking used the Bogoliubov transformation between the initial (Minkowski) vacuum and final (Schwarzschild) vacuum at the end of the collapse in
Note however that a static outside observer will never witness formation of the horizon since the collapsing object has only finite mass. He will observe the collapsing object slowly getting converted into Hawking-like radiation before horizon is formed. For him, no horizon nor singularity ever forms. That is why it was so important to solve the time-dependent problem rather than a problem in the
The next question is what happens in the foliation where the singularity forms, e.g. for an infalling observer. This is what we are currently working on, though the calculations are more involving. However, the crucial question here is whether the real singularity forms or not. Singularity at the center is a classical result. Most likely, it can be cured by quantization, just like we cured the hydrogen atom of the classical
I would like to end with a provocative analogy that my friend (a fellow scientist who would prefer not to mention his name) is using in this context. He says that this question is similar to the question of whether the afterlife exists. Horizon represents the moment of death of a person. An outside observer never sees what happens to a person beyond that point. But a person, as an infalling observer crosses the horizon and experiences either the end (singularity) or something more (or less) exotic. However, information about what he experiences seems to be lost to the outside world. Debating whether you can get information out or not is useless. Different religions have different answers.
I would end here. Thanks again for your kind invitation.
Best wishes,
Dejan Stojkovic