This is the second part of a guest blog on double field theory (thanks again to Lubos for giving me this opportunity). I will introduce the
extension of double field theory to `exceptional field theory', a subject developed in collaboration with Henning Samtleben, and explain how it allowed us to resolve open problems in basic Kaluza-Klein theory that could not be solved by standard techniques.
Exceptional field theory is the completion (in a sense I shall make precise below) of a research program that goes back to the early 80s and attempts to understand why maximal supergravity knows about exceptional groups, such as
It should be emphasized that U-dualities are tied to toroidal backgrounds. Similarly, the continuous exceptional symmetries of supergravity only emerge for compactification on tori. For compactifcations on curved backgrounds, such as spheres, there is no exceptional symmetry. Understandably, this fact led various researchers to conclude that DFT and EFT are consistently defined only on toroidal backgrounds. This is not correct, however, despite the continuing claims by some people. In its most conservative interpretation, EFT (like DFT) is simply a reformulation of (maximal) supergravity that makes its duality properties manifest. In particular, it is background-independent, and so one may describe any desired compactification. The real question therefore is whether this formalism is useful for compactifications other than toroidal ones.
Since on curved backgrounds none of the exceptional symmetries are preserved, it is reasonable to expect that EFT is more awkward than useful for such compactifications. Remarkably, it turns out that, on the contrary, EFT allows one to describe such compactifications very efficiently as generalized Scherk-Schwarz compactifications, governed by `twist matrices' taking values in the duality group. For instance, the compactification of type IIB on
Before I explain this and EFT in more detail, let me first discuss what exactly the issues in conventional Kaluza-Klein theory are that we resolved recently. They are related to the `consistency of Kaluza-Klein truncations', a subject that unfortunately is not appreciated even by many experts.
In Kaluza-Klein theory we start with some higher-dimensional theory and decompose fields and coordinates in a way that is appropriate for a lower-dimensional theory. For instance, the metric
In one extreme we may declare the fields to be completely independent of the internal coordinates, which means we are effectively truncating to the massless modes of a torus compactification. In another extreme, we may keep the full
The standard lore is that for a compactification on a manifold with metric
The trouble with this ansatz is that in general it is inconsistent! A Kaluza-Klein truncation is consistent if and only if any solution of the (truncated) lower-dimensional theory can be embedded into a solution of the (original) higher-dimensional theory. One way to see that Kaluza-Klein truncations on curved manifolds in general are inconsistent is to insert the Kaluza-Klein ansatz discussed above into the Einstein equations
and to observe that the
The known consistent truncations include 11-dimensional supergravity on
What was known already since 1984 is 1) the complete Kaluza-Klein spectrum of type IIB on
After this digression into the consistency issues of Kaluza-Klein theory, let me return to exceptional field theory (EFT) and explain how the above problems are resolved in a strikingly simple way. As in DFT, EFT makes the duality groups manifest by introducing extended/generalized spacetimes and organizing the fields into covariant tensors under these groups. In contrast to DFT, the coordinates are not simply doubled (or otherwise multiplied). Rather, the coordinates are split into `external' and `internal' coordinates as in Kaluza-Klein, but without any truncation, and the internal coordinates are extended to live in the fundamental representation.
EFT has been constructed for
The generalized spacetime of the
The field content of the theory comprises again a generalized metric, here denoted by
The theory is uniquely determined by its invariance under the bosonic gauge symmetries, including internal and external generalized diffeomorphisms. Again, there is not enough space to explain this properly, but in order to give the reader at least a sense of the extended underlying
geometry, let me display the generalized Lie derivative, which satisfies an algebra governed by the analogue of the `C-bracket' in DFT (which we call the `E-bracket'), and which encodes the internal generalized diffeomorphisms. Specifically, w.r.t. to vectors
There is one more fascinating aspect of the symmetries of EFT that I can't resist mentioning. The vector fields
[At this point let me stress that, as always in science, exceptional field theory did not originate out of thin air, but rather is the culmination of efforts by many researchers starting with the seminal work by Cremmer and Julia. The most important work for the present story is by de Wit and Nicolai in 1986, which made some symmetries, normally only visible upon reduction, manifest in the full
We are now ready to address the issue of consistent Kaluza-Klein truncations in EFT, following the two papers 1410.8145, 1506.01385. The Kaluza-Klein ansatz takes the form of a generalized Scherk-Schwarz reduction, governed by `twist matrices'
We have to verify that the
Due to these novel algebraic structures, there is no general procedure of how to solve the above consistency equations, i.e., of how, for given structure constants
These twist matrices take a surprisingly simple universal form, which then allows us to cover in one stroke the sphere compactifications of
This concludes my summary of exceptional field theory and its applications to Kaluza-Klein compactifications. Far from being impossible to describe in exceptional field theory, spheres and other curved spaces actually fit intriguingly well into these extended geometries, which allows us to resolve open problems. This is one example of a phenomenon I have seen again and again in the last couple of years: the application of this geometry to areas where duality symmetries are not present in any standard sense still leads to quite dramatic simplifications. I believe this points to a
deeper significance of these extended geometries for our understanding of string theory more generally, but of course it remains to be seen which radically new geometry (if one may still call it that) we will eventually have to get used to.
Wednesday, July 8, 2015
...
/
/
/
/
/

Thursday, July 2, 2015
...
/
/
/
/
/
First of all I would like to thank Luboš for giving me the opportunity to write a guest blog on double field theory. This is a subject that in some sense is rather old, almost as old as string theory, but that has seen a remarkable revival over the last five years or so and that, as a consequence, has reached a level of maturity comparable to that of many other sub-disciplines of string theory. In spite of this, double field theory is viewed by some as a somewhat esoteric theory in which unphysical higher-dimensional spacetimes are introduced in an ad-hoc manner for no reasons other than purely aesthetic ones and that, ultimately, does not give any results that might not as well be obtained with good old-fashioned supergravity. It is the purpose of this blog post to introduce double field theory (DFT) and to explain that, on the contrary, even in its most conservative form it allows us to attack problems several decades old that were beyond reach until recently.
Concretely, in the first part I will review work done in collaborations with Warren Siegel and Barton Zwiebach on a formulation of DFT that includes higher-derivative
So let's start by explaining what DFT is. It is framework for the spacetime (target space) description of string theory that makes the T-duality properties manifest. T-duality implies that string theory on the torus
This implies that gravity in
The idea behind DFT is to introduce a doubled space with coordinates
In DFT we reorganize the fields into
If we forget about
So far I have remained silent about the nature of the extended coordinates. Surely, we don't mean to imply that the theory is defined in 20 dimensions, right? Indeed, the gauge invariance of the theory actually requires a constraint, the `strong constraint' or `section constraint',
Is it possible to relax this constraint? Indeed, some of the initial excitement about DFT was due to the prospect of having a framework to describe so-called non-geometric fluxes, which are relevant for gauged supergravities in lower dimensions that apparently cannot be embedded into higher-dimensional supergravity/string theory in any conventional `geometric' way. Those non-geometric compactifications most likely require a genuine dependence on both types of coordinates, and various proposals have been put forward of how to relax the above constraint. (I should also mention that in the full closed string field theory the constraint is relaxed, where one requires only the level-matching constraint, allowing for certain dependences on both
[Let me also point to a close connection with a beautiful field in pure mathematics called `generalized geometry', going back to work by Courant, Severa, Weinstein, Hitchin, Gualtieri and others, in which the generalized metric is also a central object. Subsequently, this was picked up by string theorists, suggesting that one should forget about
Finally we are now ready to turn to higher-derivative
Now the problem is that we also have to use these
How can this be, given the standard folklore that gravity must be non-polynomial? The resolution is actually quite simple: since
What are these higher-derivative corrections in conventional language? This is actually a quite non-trivial question, since beyond zeroth order in
I hope my brief description conveys some of the reasons why we are so excited about double field theory. In a follow-up blog post I will explain how the extension of double field theory to exceptional groups, exceptional field theory, allows us to solve problems that, although strictly in the realm of the two-derivative supergravity, were simply intractable before. So stay tuned.

To subscribe to this single disqus thread only, click at ▼ next to "★ 0 stars" at the top of the disqus thread above and choose "Subscribe via RSS".
Subscribe to: new TRF blog entries (RSS)